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Abstract. A two-site double exchange model with a single polaron is studied using a perturbation expansion
based on the modified Lang-Firsov transformation. The antiferromagnetic to ferromagnetic transition and
the crossover from small to large polaron are investigated for different values of the antiferromagnetic
interaction (J) between the core spins and the hopping (t) of the itinerant electron. Effect of the external
magnetic field on the small to large polaron crossover and on the polaronic kinetic energy are studied.
When the magnetic transition and the small to large polaron crossover coincide for some suitable range of
J/t, the magnetic field has very pronounced effect on the dynamics of polarons.

PACS. 71.38.+i Polarons and electron-phonon interactions – 63.20.Kr Phonon-electron and phonon-
phonon interactions – 75.30.Vn Colossal magnetoresistance

1 Introduction

The origin of ferromagnetism in manganese perovskites
La1−xXxMnO3 (X = Ba, Sr, Ca etc.) is the double
exchange mechanism [1,2]. The discovery of anomalous
magnetotransport phenomena [3] in these compounds has
stimulated intensive studies in its magnetic as well as elec-
trical properties. However, the simple double-exchange in-
teraction alone is not sufficient to explain the experimen-
tal results [3]. Depending on the doping, temperature and
the radius of the dopant ion these oxides show various
phases [4]. A complete understanding of the properties of
Mn perovskites is still far from clear.

One of the keys to understand unusual physical prop-
erties is to find the role of coupling between the carriers
and the underlying lattice. Several theoretical models have
been proposed based on lattice-carrier coupling [5–10].
Many recent experiments [11] indicate that the electron-
phonon (e-ph) interaction shapes its properties very cru-
cially. Moreover, small to large polaron crossover is re-
ported by many experimental groups [12–15]. There are
models [6,7,10] which incorporate double exchange inter-
action in a polaronic model. Min and co-workers [6] have
studied the role of e-ph interaction in systems where dou-
ble exchange interaction is present. The combined model
of spin double exchange and lattice polaron [6] is used to
investigate the effect of small to large polaron crossover on
the magnetic and transport properties under the mean-
field approximation scheme. It concludes that the effect
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of polaron narrowing on the colossal magnetoresistance
(CMR) is more pronounced in CMR manganites with low
magnetic transition temperature (Tc) than in the high Tc

manganites. Within the mean field theory [6] the magnetic
transition, metal-insulator transition and a large drop in
magnetoresistance occur at the same temperature.

In an attempt to have a clearer view from a nearly
exact calculation, we include double exchange interaction
in a two site one polaron model and follow a perturbation
expansion [16] based on a modified Lang-Firsov (MLF)
phonon basis where the lattice distortions produced by
the electron are treated as variational parameters [17–19].
This method shows good convergence as well as nearly
exact results [16] for almost the entire range of e-ph cou-
pling for t/ω0 ≤ 1, where ω0 is the phonon frequency.
We investigate the ferromagnetic (FM) to antiferromag-
netic (AFM) transition, the crossover from large to small
polaron, the behavior of the effective hopping of the itin-
erant electron and the kinetic energy as a function of the
e-ph coupling strength for the ground state of the sys-
tem. Effect of the magnetic field on the large to small
polaron crossover and on the polaronic kinetic energy are
also studied.

The paper is organized as follows. In Section 2 we
define the model Hamiltonian describing different inter-
actions and calculate different physical quantities which
indicate the behaviour of small-large polaron crossover
and AFM-FM transition as a function of e-ph coupling.
In Section 3 we present the results obtained in our calcu-
lation and discussions. Section 4 contains the concluding
remarks.
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2 Formalism

The Holstein model [20] including double exchange inter-
action for the two-site single-polaron system is described
by the Hamiltonian

H =
∑
i,σ

εniσ −
∑
σ

t cos(
θ

2
)(c†1σc2σ + c†2σc1σ)

+ gω0

∑
i,σ

niσ(bi + b†i ) + ω0

∑
i

b†ibi + J
∑
〈ij〉

SiSj

(1)

where i =1 or 2, denotes the site. ciσ (c†iσ) is the annihi-
lation (creation) operator for the itinerant electron with
spin σ at site i, niσ (= c†iσciσ) is the corresponding number
operator and g denotes the on-site e-ph coupling strength.
bi and b†i are the annihilation and creation operators re-
spectively for the phonons corresponding to interatomic
vibrations at site i, ω0 is the corresponding phonon fre-
quency and ε is the bare-site energy. Si and Sj are the
core-spins at the site i and j respectively, θ is the angle
between the core-spins Si and Sj . The transfer hopping
integral (t) is modified through the relative angle θ as
t cos( θ2 ) because of the strong Hund’s coupling between
the spins of the core electrons and itinerant electron [2].
J is the superexchange antiferromagnetic interaction be-
tween the neighbouring core-spins. Since we will restrict
ourselves to the single-electron case we will not consider
the electron spin indices.

If one compares our simple model with the manganite
(e.g. La1−xCaxMnO3) system the core spin and the itin-
erant electron may be identified with the t32g (localized)
electrons and the e1

g (mobile) electron of Mn3+ of the
manganite system respectively. It may be mentioned that
for manganites the Jahn-Teller(JT) coupling is important
whereas the Holstein phonon mode, in general, should cor-
respond to the breathing mode in manganites [8]. To in-
clude JT coupling one should consider two eg orbitals (say
α and β) and their coupling to the JT phonon mode. For
the single electron case, as considered here, if one neglects
the interorbital hopping (tαβ = 0) then the Hamiltonian
can be separated into two parts each corresponds to 1-
orbital case and as a consequence the 2-orbital problem
is reduced to an effective single orbital problem with an
effective Holstein type interaction as in Hamiltonian (1).
For the two electron case the above simplification can-
not be done and a study of two-site two-electron prob-
lem considering two orbitals in the context of mangan-
ites is in progress. We have considered here one itinerant
electron in a two-site 1-orbital system. So, the density
of itinerant electron 〈n〉 is equal to 0.5 which, in prin-
ciple,corresponds to x = 0.5 for manganite system. It
may be mentioned that the studies of 1-orbital [9] and
2-orbital Kondo model [7] in the context of manganites
using Monte Carlo techniques showed that the results for
2-orbital model at n = 1 (x = 0) are similar to those for
single orbital model at x = 0.5.

By introducing new phonon operators a = (b1 +
b2)/
√

2 and d = (b1−b2)/
√

2, the Hamiltonian (H) is sep-
arated into two parts : one corresponding to the in-phase
mode which does not couple with the electronic degrees of
freedom and the other involving out-of-phase mode (Hd)
which represents an effective e-ph system and cannot be
solved analytically [21].

The MLF transformation with variable phonon basis
is used so that a convergent perturbation expansion can
be obtained. The transformed Hamiltonian is

H̃d = eRHde−R = ω0d
†d+

∑
i

εpni − t cos
(
θ

2

)
×
[
c†1c2 exp(2λ(d† − d)) + c†2c1 exp(−2λ(d† − d))

]
+ ω0(g+ − λ)(n1 − n2)(d+ d†) + JS2 cos θ (2)

where R = λ(n1−n2)(d†−d), λ is a variational parameter
related to the displacement of the d oscillator, g+ = g/

√
2

and εp = ε− ω0(2g+ − λ)λ.
For the perturbative expansion following reference [16]

the basis set is chosen as |±, N〉 = 1√
2
(c†1 ± c

†
2) |0〉e|N〉,

where |+〉 and |−〉 are the bonding and antibonding elec-
tronic states and |N〉 denotes the Nth excited oscillator
state within the MLF phonon basis. The diagonal part of
the Hamiltonian H̃d in the chosen basis is treated as the
unperturbed Hamiltonian (H0) and the remaining part of
the Hamiltonian H1 = H̃d −H0, as a perturbation.

The unperturbed energy of the state |±, N〉 is given by

E
(0)
±,N = 〈N,±|H0|±, N〉

= Nω0 + εp ∓ teff

[
N∑
i=0

(2λ)2i

i!
(−1)iNCi

]
+ JS2 cos θ

(3)

where teff = t cos θ2 exp (−2λ2) and the general off-
diagonal matrix elements of H1 between the two states
|±, N〉 and |±,M〉 may be calculated for (N −M) > 0 as
in reference [16].

Within the chosen basis, the unperturbed ground state
is the |+〉|0〉 state with the unperturbed energy, E(0)

0 =
εp − teff + JS2 cos θ.

The first order correction to the ground state wave
function is obtained as,

|ψ(1)
0 〉 =

[ω0(g+ − λ)− 2λteff ]

(E(0)
0 −E(0)

+,1)
|−, 1〉

−
∑

N=2,3,4,..

teff(2λ)N
√
N !(E(0)

0 −E(0)
e,N )

|e,N〉 (4)

where e = + or − for even and odd N respectively.
The first order correction to the energy (E(1)

0 ) is zero
since H1 has no diagonal matrix element in the chosen
basis. The second order correction to the ground state
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energy is given by

E
(2)
0 =

∑
N=1,3..

|−teff (2λ)N√
N !

+ ω0(g+ − λ) δN,1|2

(E(0)
0 −E(0)

−,N )

+
∑

N=2,4..

|−teff (2λ)N√
N !

|2

(E(0)
0 −E(0)

+,N )
· (5)

Higher order corrections to the ground state wavefunction
and energy are obtained following reference [16]. For the
study of the effect of the magnetic field (h) we include
a term −g̃

∑
i µBhSi cos θ2 to the Hamiltonian in equa-

tion (1) (where g̃ is the Lande g factor) and as a result a
term −2µeffh cos θ2 is added to E(0)

0 where µeff (= g̃SµB)
is the local moment of the core spins. In this paper we
express the magnetic field (h) in a unit of µeff = 1.

Now a proper choice of λ is to be made so that the
perturbative expansion becomes convergent. Our previous
work [16] has shown that the λ, obtained by minimizing
the unperturbed ground state energy, gives satisfactory
convergence to the perturbation series for t/ω0 ≤ 1 and
the convergence becomes very rapid and excellent with
decreasing value of t/ω0. Here also we will follow the sim-
ilar procedure. Minimizing the unperturbed ground state
energy E(0)

0 with respect to λ we obtain

λ =
ω0g+

ω0 + 2teff
· (6)

Minimization of the unperturbed ground state energy with
respect to θ gives an approximate value (θMLF) of θ

cos
θMLF

2
=
[
t exp (−2λ2)

4JS2
+
µeffh

2JS2

]
(for nonzero solution of θMLF).

However, exact θ should be evaluated from the minimiza-
tion of the exact ground state energy. For each value of
g+ we calculate the energy up to the sixth order in per-
turbation [16] and find out for which value of θ the energy
(including perturbation corrections) is minimum.

We have also calculated tKE
eff = −EKin = 〈ψG| t cos( θ2 )

[c†1c2 exp(2λ(d†−d))+ c†2c1 exp(−2λ(d†−d))]|ψG〉 where
ψG is the ground state wave-function which we have cal-
culated up to the fifth order corrections in perturbation.
tKE
eff describes the kinetic energy of the system and it re-

duces to the effective hopping (teff) for both the weak and
strong coupling limits [22].

The static correlation functions 〈n1u1〉0 and 〈n1u2〉0,
where u1 and u2 are the lattice deformations at sites 1 and
2 respectively, produced by an electron at site 1, are the
standard measure of polaronic character. The correlation
functions for this two-site system may be written as [16]

〈n1u1〉0 =
1
2

[
−(g+ + λ) +

A0

NG

]
(7)

〈n1u2〉0 =
1
2

[
−(g+ − λ)− A0

NG

]

JS2 = 0.05
JS2 = 0.15

JS2 = 0.25

JS2 = 0.5

t = 1, h = 0

g+

�
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Fig. 1. Variation of the relative angle (θ) between the core-
spins, with g+ for t = 1.0 and JS2 = 0.05, 0.15, 0.25 and 0.5
(in units of ω0=1).

where

A0 ≡ 〈ψG|n1(d+ d†)|ψG〉

where NG is the normalization factor to the wavefunc-
tion. The variation of the physical quantity λcorr/g+ =
−〈n1(u1−u2)〉0/g+ with the e-ph coupling strength man-
ifests the nature of large to small polaron crossover. Its
value becomes 1 in the extreme small polaronic limit where
the lattice distortion is very local and decreases signifi-
cantly in the small to large polaron crossover region as g+

decreases.

3 Results and discussions

In the combined model of polaron and double exchange
interaction, the nature of variation of θ, tKE

eff and λcorr/g+

with g+ reveal different transitions and crossover regions.
We focus our attention to the parameter space where t > J
as it corresponds to real systems [7,23]. We present the
results for t = 1.0 and JS2 = 0.05, 0.15, 0.25 and 0.5 (in a
scale of ω0 = 1.0). The bare-site energy ε is taken as zero.

Figure 1 shows the change of relative orientation (θ)
of two core spins as a function of e-ph coupling strength
(g+) for the ground state. For small values of g+ two core
spins are either aligned parallel or canted depending on
the strength of t/JS2. With increasing g+ the angle (θ)
increases and finally a transition from the FM or canted
AFM state to the AFM state occurs. Nature of this tran-
sition depends on the ratio of t to JS2. For t = 1.0,
JS2 = 0.05 the FM to AFM transition is very sharp.
With increasing value of JS2 the transition occurs at a
lower value of g+ and it becomes broader. For higher val-
ues of JS2 (= 0.25, 0.5), the crossover from the canted
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t = 1, JS2 = 0.15, h = 0
�
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Fig. 2. Variations of θ, tKE
eff and λcorr/g+ with g+ for t = 1.0,

JS2 = 0.15 and h = 0.

state to the AFM state is very smooth. It may be men-
tioned that Yunoki and Moreo [9] studied the 1-orbital
Kondo model with AF interaction (J) between the core
spins (in absence of e-ph interaction) in the context of
manganites and obtained FM state at n = 0.5 for low
values of J . With increasing J the ground state at quar-
ter filling (n = 0.5) appears to be a spin spiral state and
ultimately an AF state. For the two orbital model in pres-
ence of e-ph coupling a similar FM state is observed for
low values of e-ph coupling for n = 1 and an AF state for
large values of e-ph coupling.

With increasing g+ a large to small polaron crossover
occurs in the system in addition to the magnetic transi-
tion. This is clearly seen from Figures 2 and 3 where the
variations of tKE

eff , λcorr/g+ and θ with g+ are shown. The
large to small polaron crossover is identified by the sharp
fall in tKE

eff and rise in λcorr. For t = 1.0 and JS2 = 0.15
the FM to AFM transition and the large to small polaron
crossover occur simultaneously (Fig. 2) around g+ = 1.2.
However, for JS2=0.05 the magnetic transition occurs at
a higher values of g+ than that corresponding to large to
small polaron crossover (Fig. 3). In this situation the FM
state has two regions: one with appreciable value of tKE

eff

and the other with much reduced value of tKE
eff (Fig. 3).

In the former case, charge carrier is the delocalized large
polaron with appreciable hopping and this regime is ex-
pected to be metallic in the thermodynamic limit. In the
latter region the hopping would be heavily suppressed by
the small polaron formation and it may result in an in-
sulating FM state in some cases. Thus we find that there
is a possibility of FM metal-FM insulator-AFM insula-
tor transition for low values of JS2/t. It is to be noted
that if one follows the usual MLF method (zeroth order
of perturbation within our approach) the FM-AFM tran-
sition coincides with large to small polaron crossover for
any value of JS2/t. This is demonstrated in Figure 3 for

� (MLF) �

�=g+

�corr=g+

teff

tKE
eff

t = 1, JS2= 0.05, h = 0

g+
2.521.510.50

3

2.5

2

1.5

1

0.5

0

Fig. 3. Variations of θ (with and without perturbation), tKE
eff ,

teff , λcorr/g+ and λ/g+ with g+ for t = 1.0, JS2 = 0.05 and
h = 0. Note that θ(MLF), teff and λ/g+ are obtained within the
MLF method without considering perturbation corrections.

JS2/t = 0.05, where we find the coincidence of the FM-
AFM transition with the large-small polaron crossover
within the usual MLF approach whereas the nearly exact
calculations yield different result. The nearly exact results,
obtained from the MLF perturbation method, makes the
large-small polaron crossover smooth in favour of the con-
clusion of Löwen [24].

In Figure 4 we have shown the effect of the external
magnetic field on θ, λcorr/g+ and tKE

eff for JS2 = 0.15. The
magnetic field favours the FM state, hence the FM-AFM
transition and associated large-small polaron crossover
(for JS2/t = 0.15) take place at a higher value of g+ with
increasing field. From Figure 4 it is clear that the magnetic
field reduces the value of the local distortion (λcorr/g+)
and enhances tKE

eff significantly in the large-small polaron
crossover region provided the crossover is associated with
a FM-AFM transition.

For JS2/t = 0.05 the system remains in the FM state
in the large-small polaron crossover region, consequently
the magnetic field has no effect on tKE

eff in this crossover
region. However, the field has an effect on θ, hence on tKE

eff
at the FM-AFM transition.

In Figure 5 we plot the change in tKE
eff due to the mag-

netic field as a function of g+. This quantity may be re-
lated to the magnetoresistance for a system in the thermo-
dynamic limit. For polarons the conductivity at low tem-
peratures is dominated by the tunneling mobility which is
proportional to t2eff within the zeroth order of perturba-
tion [10]. In general the tKE

eff is a measure of delocalization
of the electron. A reduction of tKE

eff will cause a reduc-
tion in mobility. In Figure 5 the change in tKE

eff due to the
field is very sharp and prominent at the FM-AFM tran-
sition when it is associated with the large-small polaron
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Fig. 4. Variation of (a) θ, (b) λcorr/g+ and (c) tKE
eff with g+

for different values of the magnetic field h = 0, 0.02 and 0.04
(in units of µeff=1) for t = 1.0 and JS2 = 0.15.

crossover for JS2/t = 0.15, while it shows a broad smaller
peak for JS2/t = 0.05 where the FM-AFM transition is
not associated with the polaron crossover. For the former
case the magnetic field would have pronounced effect on
the transport properties.
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Fig. 5. Variation of the change in tKE
eff due to the magnetic

field
�
(tKE

eff (h)− tKE
eff (0))/h

�
as a function of g+ for t = 1.0,

JS2 = 0.05 and 0.15 and h = 0.04.

4 Conclusions

From our studies on the two-site double exchange model
with a single polaron as a function of e-ph coupling
strength we conclude that the nature of the FM-AFM
transition depends on the relative values of J and t. The
transition is sharper for smaller values of J/t. For high val-
ues of J/t a canted state is stable instead of a FM state for
weak e-ph coupling (g+) and the crossover from the canted
state to the AFM state is very smooth with increasing g+.
For suitable values of J/t (= 0.15) the FM-AFM transi-
tion coincides with the large-small polaron crossover. For
this case the external magnetic field has very prominent ef-
fect on the polaronic local distortion and kinetic energy in
the transition region (as in Figs. 4b and 4c respectively).
Within the MLF method (zeroth order of perturbation)
the polaron crossover is always associated with FM-AFM
transition for any value of J/t whereas our results based
on convergent perturbation expansion yield that the coin-
cidence of magnetic transition and polaron crossover will
depend on the value of t and J . For low values of J/t a
crossover from the FM large polaronic state to the FM
small polaronic state with reduced hopping occurs and
then a transition to the AFM state takes place at a higher
value of g+.
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